

Use of Peptide Based Formulations for Optimizing Enteral Nutrition Delivery, GI Tolerance, and Metabolic Management

Presented by Jose M. Saavedra, MD, FAAP and Juan B. Ochoa Gautier, MD, FACS, FCCM

References*

- 1. Gungabissoon U, et al. Prevalence, risk factors, clinical consequences and treatment of enteral feed intolerance during critical illness. *JPEN* 205;39(4):441-448.
- 2. Curry AS, et al. Early introduction of a semi-elemental formula may be cost saving compared to a polymeric formula among critically ill patients requiring enteral nutrition: A cohort cost-consequence model. *ClinicoEconomics and Outcomes Research* 2018:10:293-300.
- 3. Seres D, Ippolito P. Pilot study evaluating the efficacy, tolerance and safety of a peptide-based enteral formula versus a high protein enteral formula in multiple ICU settings (medical, surgical, cardiothoracic). *Clinical Nutrition* 2017;36:706-709.
- 4. Jakob S, et al. A randomized controlled pilot study to evaluate the effect of an enteral formulation designed to improve gastrointestinal tolerance in the critically ill patient-the SPIRIT trial. *Critical Care* 2017;21:140.
- 5. Liu MY, et al. Peptide-based enteral formula improves tolerance and clinical outcomes in abdominal surgery patients relative to a whole protein enteral formula. *World J Gastrointest Surg* 2016;8(10):700-705.
- 6. Kuchkuntla AR, et al. Retrospective descriptive analysis of demographic characteristics of patients receiving peptide-based diets (RAD peptide study). Abstract ASPEN 2019, Phoenix, AZ, M-16.
- 7. Minor G, et al. Formula switch leads to enteral feeding tolerance improvements in children with developmental delays. *Glob Pediatr Health* 2016;3:2333794X16681887.
- 8. Hopkins B, et al. Formula switch leads to enteral feeding tolerance improvements in adults. Abstract at the Canadian Nutrition Society Annual Conference 2019, Niagara Falls, ON.
- 9. Tang J, et al. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. *J Appl Physiol* 2009;107(3):987-992.
- 10. Daniel H, Zietek T. Taste and move:glucose and peptide transporters in the gastrointestinal tract. *Exp Physiol* 2015;100(12):1445-1450.
- Ha E, Zemel M. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people. *Journal of Nutritional Biochemistry* 2003;14:251-258.
- 12. Fried MD, et al. Decrease in gastric emptying time and episodes of regurgitation in children with spastic guadriplegia fed a whey-based formula. *Journal of Pediatrics* 1992;12(4):569-572.
- 13. Yalcin AS. Emerging therapeutic potential of whey proteins and peptides. *Current Pharmaceutical Design* 2006;12:1637-1643.
- 14. Gupta C, Prakash D. Therapeutic potential of milk whey. *Beverages* 2017;3, 31;doi:10.3390/beverages3030031.

Use of Peptide Based Formulations for Optimizing Enteral Nutrition Delivery, GI Tolerance, and Metabolic Management

Presented by Jose M. Saavedra, MD, FAAP and Juan B. Ochoa Gautier, MD, FACS, FCCM

References Continued*

- 15. Power O, et al. Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. *Amino Acids* 2009;37:333-339.
- 16. Mehta NM, et al. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. *Am J Clin* Nutr 2015;102:199-206.
- 17. Heyland DK, et al. Implementing the PEP uP protocol in critical care unites in Canada: Results of a multicenter, quality improvement study. *JPEN* 2015;39(6):698-706.
- 18. Zusman O, et al. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. *Critical Care* 2016;367.
- 19. McClave SA, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically III Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) 2016;40(2):159-211.
- 20. Ferrie S, East V. Managing diarrhoea in intensive care. Aust Crit Care 2007;20(1):7-13.
- 21. Reintam A, et al. Crit Care (2008) 12: R90. https://doi.org/10.1186/cc6958.
- 22. Reintam Blaser A, et al. Gastrointestinal symptoms during the first week of intensive care are associated with poor outcome: a prospective multicenter study 2013;39:899-909.
- 23. McClave SA, et al. Feeding the critically ill patient. Crit Care Med 2014;42:2600-2610.
- 24. Allingstrup M, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial. 2017;43(11):1637-1647.
- 25. Farrokhi F, et al. Glycemic control in non-diabetic critically ill patients. *Best Pract Res Clin Endocrinol Metab* 2011;25(5):813-824.
- 26. Van den Berghe G, et al. Intensive insulin therapy in critically ill patients. *New Engl J Med* 2001;345:1359-1367.
- 27. Olariu E, et al. A systematic scoping review on the consequences of stress-related hyperglycaemia. *PLoS One* 2018;13(4):e0194952.
- 28. Dickerson RN, et al. Hypocaloric, high-protein nutrition therapy in older vs younger critically ill patients with obesity. *JPEN* 2013;37(3):342-351.
- 29. Zusman O, et al. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. *Critical Care* 2016;367.
- 30. Patel JJ, et al. Controversies surrounding critical care nutrition: An appraisal of permissive underfeeding, protein and outcomes. *JPEN* 2018;42(3):508-515.
- 31. Rice TW, et al. Dietary management of blood glucose in medical critically ill overweight and obese patients: An open label randomized trial. *JPEN* 2019;43(4):471-480.
- 32. Hare KJ, et al. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. *Diabetes* 2010;59(7):1765-1770.

Use of Peptide Based Formulations for Optimizing Enteral Nutrition Delivery, GI Tolerance, and Metabolic Management

Presented by Jose M. Saavedra, MD, FAAP and Juan B. Ochoa Gautier, MD, FACS, FCCM

References Continued*

- 33. Seino Y, et al. GIP and GLP-1, the two incretin hormones: Similarities and differences. *J Diabetes Investig* 2010;1(1-2):8-23.
- 34. Tolhurst G, et al. Nutritional regulation of glucagon-like peptide -1 secretion. *J Physiol* 2009;587(Pt 1):27-32.
- 35. Eckel RH. Dietary substitution of medium-chain triglycerides improves insulin-mediated glucose metabolism in NIDDM subject. *Diabetes* 1992;41(5):641-647.
- 36. Huhmann MB, et al. Very high-protein and low-carbohydrate enteral nutrition formula and plasma glucose control in adults with type 2 diabetes mellitus: a randomized crossover trial. *Nutr Diabetes* 2018;8(1):45.
- 37. ApSimon M, et al. Narrowing the protein deficit gap in critically ill patients using a very high protein enteral formula. Abstract of Distinction, ASPEN 2019, Phoenix, AZ.
- 38. Hussein R, et al. Should hypocaloric Hyperproteic nutrition become the standard of care in critically ill patients? Abstract at ASPEN 2019, Phoenix, AZ.
- 39. Ochoa-Gautier J, et al. Increased protein delivery with a hypocaloric protocol may be associated with lower 30-day mortality in critically ill patients. Abstract at ISIECM 2019, Brussels, Belgium.
- 40. Bryk J, et al. Effect of calorically dense enteral nutrition formulas on outcome in critically ill trauma and surgical patients. *JPEN* 2008;32(1):6-11.
- 41. Casaer M, et al. Early versus late parenteral nutrition in critically ill adults. *New England Journal of Medicine* 2011;365:506-517.
- 42. Rice TW, et al. Randomized trial of initial trophic versus full-energy enteral nutrition in mechanically ventilated patients with acute respiratory failure. *Critical Care Medicine* 2011;39(5):967-974.
- 43. Heidegger CP, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomized controlled clinical trial. *Lancet* 2013;381(9864):385-393.
- 44. Singer P, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. *Intensive Care Medicine* 2011;37(4):601-609.
- 45. Doig G, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: A randomized controlled trial. *JAMA* 2013;309(20):2130-2138.
- 46. Arabi YM, et al. Permissive underfeeding or standard enteral feeding in critically ill adults. *New England Journal of Medicine* 2015;372:2398-2408.
- 47. Rugeles S, et al. High-protein hypocaloric vs normocaloric enteral nutrition in critically ill patients: A randomized clinical trial. *Journal of Critical Care* 2016;35:110-114.