Addressing Sarcopenia: Optimizing Protein Intake with Aging

Douglas Paddon-Jones, Ph.D., FACSM
Sheriden Lorenz Distinguished Professor of Aging and Health

Department of Nutrition and Metabolism,
Center for Recovery, Physical Activity and Nutrition
University of Texas Medical Branch, Galveston, TX, USA

Presented on November 6, 2019
Financial Disclosure

Financial support for this presentation was provided by Nestlé Health Science. The views expressed herein are those of the presenter and do not necessarily represent Nestlé’s views. The material herein is accurate as of the date it was presented, and is for educational purposes only and is not intended as a substitute for medical advice.

Reproduction or distribution of these materials is prohibited.

©2019 Nestlé. All rights reserved.
Objectives

- Explain changes in skeletal muscle with aging across community and clinical settings
- Describe the benefits of protein for patients with sarcopenia and sarcopenic obesity
- Explain the importance of protein quality and quantity on muscle health and functionality in older adults
Disclosures

I have received funding, participated on a Scientific Advisory Board or Speaker’s Bureau for:

• National Dairy Council
• US Dairy Export Council
• American Egg Board
• National Cattlemens Beef Association
• Abbott Nutrition
• Agropur
• Leprino Foods
• Sabra Wellness
• National Space Biomedical Research Institute
Conceptual Model.....

Inactivity
Disease
Inflammation
Mitochondrial Dysfunction
Inadequate Nutrition
Aging
Blood Flow

Muscle Loss

Activity/Sleep

Protein

Pharmacology
How much protein do we need?

+ when, why, how and who....
Recommended Dietary Allowance (RDA)
→ 0.8 g protein / kg bodyweight / day

“The minimum daily average dietary intake level ... [of good quality protein]...that meets the nutrient requirements of 97 – 98% of healthy individuals”

0.8 g/kg/day:
- 220 lb - 100 kg = 80 g protein/day
- 165 lb - 75 kg = 60 g protein/day
- 130 lb - 60 kg = 48 g protein/day
- 110 lb - 50 kg = 40 g protein/day
Position Statements: healthy older adults

PROT-AGE Group

1.0 - 1.2 g/kg/day

ESPEN Expert Group
Position Statements: highly active older adults

American College of Sports Medicine

Dietitians of Canada

Academy of Nutrition and Dietetics

Protein intake should be increased in highly active people:

1.2 - 1.7 g/kg/day

ACSM/ADA/DC Position, MSSE, 2009
Position Statements: inpatient / clinical populations

1.2 – 2.5 g/kg/day

Heyland et. al. *Nutrients*, 2018
If the RDA defines the minimum protein intake for healthy adults…is there a maximum?

IOM / FNB: No Tolerable Upper Intake Level

AMDR: Up to 35% of daily energy (~220 g protein/day)
Institute of Medicine:

“protein content of diet is not related to progressive decline in kidney function with age”
How Much Protein Do We Eat?

National Health and Nutrition Examination Survey (NHANES)

Total: ~ 88 g/day (~1.2 g protein/kg/day)

Protein consumed per meal (g)

Breakfast	Lunch	Dinner	Snacks
13 | 27 | 38 | 8

https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
How much protein per meal do we need?

- a message of moderation -

Symons et. al. AJCN, 2007
Symons et. al. JADA, 2009
Synergistic Effect of Protein and Exercise

Symons et al. JNHA, 2011
Net Muscle Protein Synthesis (mg Phe/leg)

Reality: Age-related dose-response

More than ~25 g protein

Less than ~15 g protein

Katsanos et. al. AJCN, 2005
Protein Quantity and Daily Distribution
Concept: Typical / skewed protein intake

We can’t store excess protein for later anabolism

Paddon-Jones and Rasmussen. Curr Opin Clin Nutr Metab Care, 2009
Concept: Moderating protein at each meal?

- **Anabolism**
 - 30 g
 - 30 g
 - 30 g

- **Catabolism**

 - maximum rate of protein synthesis

 - **Total Protein**: 90 g

 - **Usable Protein**: 90 g

 - ~ 1.3 g/kg/day

\[\rightarrow \text{greater 24 h protein synthesis response?} \]

Paddon-Jones and Rasmussen. Curr Opin Clin Nutr Metab Care, 2009
Protein distribution impacts muscle protein synthesis

Mamerow et.al. J Nutr, 2014

24 h response

- Even Protein: 30 - 30 - 30 g
- Skewed Protein: 10 - 15 - 65 g

25% decrease

* p< 0.05
Sarcopenia is a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes such as physical disability, poor quality of life, and death.
Sarcopenia can exist at any BMI

- Sarcopenic obesity is characterized by low lean mass and excess fat mass
- Associated with declines in functionality and increased cardiometabolic risk

Wu et al. Ann Clin Oncol 2019

Johnson Stoklossa et. al. Curr Dev Nutr 2018
Catabolic Crisis Model

English and Paddon-Jones. Curr Opin Clin Nutr Metab Care, 2010
What is driving changes in muscle and fat...?

Bed Rest Studies
Mimics the physical inactivity of hospitalization, while separating the catabolic, disease-related effects from the intrinsic effects of skeletal muscle disuse.

Research models to assess nutrition interventions:
Bed rest / disuse in clinical settings

Older inpatients: ~4 days hospitalization

Inactivity and Muscle Loss
- Bed Rest Studies -

<table>
<thead>
<tr>
<th>Young</th>
<th>Middle-aged</th>
<th>Older</th>
<th>Older Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Days</td>
<td>14 Days</td>
<td>10 Days</td>
<td>4 Days</td>
</tr>
</tbody>
</table>

Loss of lean leg mass (g)

Disuse inactivity: age and sex-specificity

English et. al. AJCN, 2016
+ new prelim data
Disuse atrophy: “responders & non-responders”

N=16 healthy middle-age males; 14 days bed rest

English et. al. AJCN, 2016
Dietary Interventions: obstacles and opportunities

→ Pragmatic approach: efficiency and protein quality

Leucine:
- branch chain amino acid (BCAA)
- common in most high quality proteins
- key regulatory role in protein synthesis
- overstated benefits?
Protein Quality

- Defined in terms of essential amino acid content and digestibility (bioavailability)
 - Protein Digestibility Corrected Amino Acid Score (PDCAAS)
- Leucine varies among protein sources (highest concentration in whey)

PDCAAS of common protein foods

<table>
<thead>
<tr>
<th>Source</th>
<th>PDCAAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td>1.00</td>
</tr>
<tr>
<td>Whey</td>
<td>1.00</td>
</tr>
<tr>
<td>Egg</td>
<td>1.00</td>
</tr>
<tr>
<td>Soy protein isolate</td>
<td>1.00</td>
</tr>
<tr>
<td>Casein</td>
<td>1.00</td>
</tr>
<tr>
<td>Beef</td>
<td>0.92</td>
</tr>
<tr>
<td>Soy</td>
<td>0.91</td>
</tr>
<tr>
<td>Pea</td>
<td>0.67</td>
</tr>
<tr>
<td>Oat</td>
<td>0.57</td>
</tr>
<tr>
<td>Whole wheat</td>
<td>0.45</td>
</tr>
</tbody>
</table>

van Vliet et. al. J Nutr 2015
Leucine (4 g/meal): *partially protects muscle function*

Note: Testosterone did not protect strength during bed rest

Healthy middle-age adults; 14 days bed rest

English et. al. AJCN, 2016

Zachwieja et. al. JCEM, 1999
Leucine: *partially / temporarily protects muscle mass*

Healthy middle-age adults; 14 days bed rest

English et. al. AJCN 2016
Anabolic efficiency:

→ Improving dietary protein quality (whey) enhances fat loss?

Design

- 7 days bed rest
- N = 20
- healthy older adults

Diets

- 0.9 g protein/kg/day
- whey protein augmentation
- mildly (10%) hypocaloric

Loss of lean leg mass

WHEY: - 680 ± 131 g
MIXED: - 1035 ± 138 g (p=0.08)

Protein Intake and Functionality

- Observational studies show higher protein intake is associated with better physical function (e.g. strength, functional status), while results from clinical trials are mixed.

<table>
<thead>
<tr>
<th>Study (ref)</th>
<th>Subjects, n</th>
<th>Age, y</th>
<th>Design</th>
<th>Dietary assessment</th>
<th>Physical function measurement</th>
<th>Protein intake</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregorio et al. (76)</td>
<td>387 F</td>
<td>60–90</td>
<td>CS</td>
<td>4-d food record</td>
<td>PPT, SPPB</td>
<td>In g·kg⁻¹·d⁻¹; LP: <0.8; HP: ≥0.8</td>
<td>Upper and lower extremity function was impaired in those who consumed an LP diet</td>
</tr>
<tr>
<td>McLean et al. (84)</td>
<td>759 M, 986 F</td>
<td>29–85</td>
<td>L (6 y)</td>
<td>FFQ</td>
<td>IHHD</td>
<td>In g/d; Q1: 63; Q2: 74; Q3: 82; Q4: 94</td>
<td>Higher total and animal protein intakes preserved grip strength in adults ≥60 y</td>
</tr>
<tr>
<td>Sahni et al. (82)</td>
<td>1160 M, 1496 F</td>
<td>29–86</td>
<td>CS</td>
<td>FFQ</td>
<td>IHHD</td>
<td>In g/d; Q1: M 64.2, F 56.9; Q2: M 70.2, F 63.1; Q3: M 78.9, F 73.4; Q4: M 101.6, F 93.6</td>
<td>Higher plant (but not total and animal) protein intake was associated with greater quadriceps strength</td>
</tr>
<tr>
<td>Isanejad et al. (79)</td>
<td>554 F</td>
<td>65–72</td>
<td>L (3 y)</td>
<td>3-d food record</td>
<td>IHHD, SPPB</td>
<td>In % of energy (g·kg⁻¹·d⁻¹); T1: 16.4 (<0.8); T2: 17.4 (0.8–1.2); T3: 18.6 (≥1.2)</td>
<td>Higher protein intake is positively associated with muscle strength and physical function</td>
</tr>
</tbody>
</table>

1CS, cross-sectional; HP, high protein; IHHD, isometric hand-held dynamometer; L, longitudinal; LP, low protein; PPT, physical performance test; Q, quartile; ref, reference; SPPB, short physical performance battery; T, tertile.

Traylor et. al. Adv Nutr 2018
Recommendations: *Prevention* and Treatment

For healthy older adults: day-to-day

Establish a dietary framework that includes a **moderate** amount of **high quality** protein at **each meal**.

Modify as necessary to accommodate individual needs:

- *energy requirements*
- *physical activity*
- *health status*
- *body composition goals*
- *dentition, satiety*
Recommendations: Prevention and *Treatment*

During periods of catabolic crisis:

- 0.8 g protein/kg/day is insufficient
- Blunt addition of protein/energy is inefficient
- Aggressive support with high quality protein (*whey*/*leucine*) and activity may help preserve muscle health
Acknowledgements

• Emily Arentson-Lantz
• Adam Wacher
• Elena Volpi
• Heather Leidy
• Wayne Campbell
• Don Layman

Funding

• RO1 NR012973
• R21 AR062479
• NSBRI (NNJ08ZSA002N)
• National Cattlemens Beef Association
• National Dairy Council
• UTMB Claude D. Pepper Older Americans Independence Center
Questions?

Nutrition-related resources and tools are available from Nestlé Nutrition Institute: nestlenutrition-institute.org

Visit MyCE at MyCEeducation.com Offering CE to dietitians and nurses