
Program Director: Robert N. Baldassano, MD
Colman Professor of Pediatrics, Children's Hospital of Philadelphia

Why Do We Need Nutrition Therapies for IBD?

Dr. Lindsey Albenberg, Children's Hospital of Philadelphia

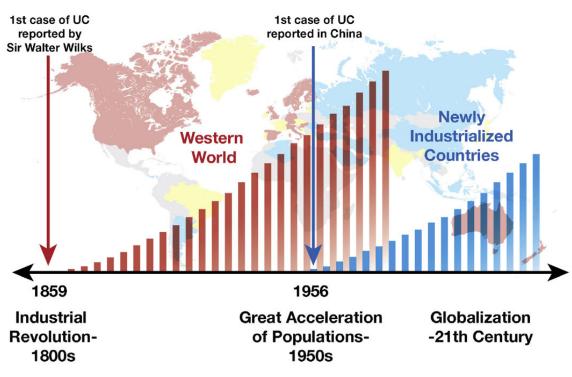
Targets for Dietary Intervention: Development of the Crohn's Disease Exclusion Diet

Dr. Arie Levine, Wolfson Medical Center, Israel

Financial Support for this presentation was provided by Nestlé Health Science. The views expressed herein are those of the presenters and do not necessarily represent Nestlé's views. The material herein is accurate as of the date it was presented, and is for educational purposes only and is not intended as a substitute for medical advice.

Reproduction or distribution of these materials is prohibited.

© 2019 Nestlé. All rights reserved.



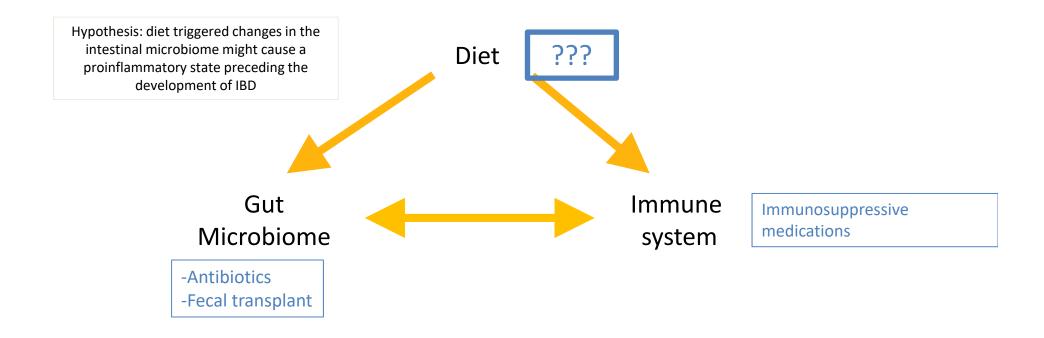
Why Do We Need Dietary Therapies for IBD?

Lindsey Albenberg, DO

Center for Pediatric Inflammatory Bowel Disease Assistant Professor of Pediatrics Division of Gastroenterology, Hepatology, and Nutrition

The IBD epidemic

- Incidence of IBD rose steadily in the 20th century in the Western world
- IBD was relatively rare in developing nations
- Over the past few decades, newly industrialized countries have documented the emergence of IBD

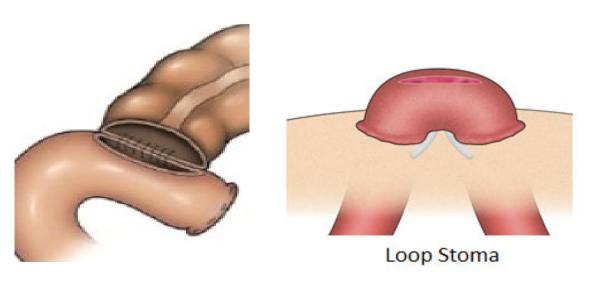

Global Burden of IBD: Prediction in 2025

- IBD is a global disease
- ~5 million affected worldwide
- Prevalence in the Western World 0.5%
- Rate in the rise of incidence is steep in

newly industrialized countries and in adolescents in industrialized countries

• The number of patients with IBD in newly industrialized countries might approximate that in the Western world by 2025 owing to rising prevalence and rapidly growing populations

Targets in IBD Pathogenesis


Why Do We Need Dietary Therapies for IBD?

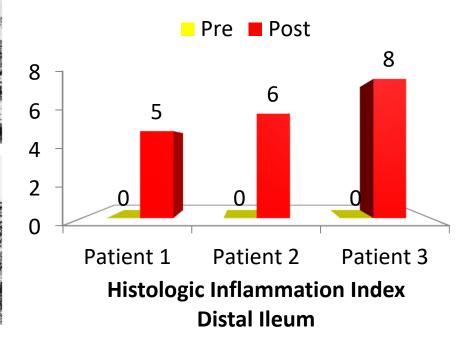
- Science tells us that something in the lumen of the gut is driving inflammation
- Our patients want to know what they should eat and the information on the internet is not consistent and not evidence based
 - Our patients are already changing their diets
- Even our best therapies are not effective in all patients and they are associated with risks

Why Do We Need Dietary Therapies for IBD?

- Science tells us that something in the lumen of the gut is driving inflammation
- Our patients want to know what they should eat and the information on the internet is not consistent and not evidence based
 - Our patients are already changing their diets
- Even our best therapies are not effective in all patients and they are associated with risks

Crohn's Disease Surgery: An Experimental Model

 We have known for 20 years that diversion of the fecal stream is a treatment for some patients with CD


D'Haens GR, et al. Gastroenterology. 1998;114(2):262-267.

Fecal Diversion Heals Ileal Mucosa Exposure to Ileal Contents Lead to Inflammation

Prior to infusion of ileal contents

Following infusion of ileal contents

The Effect of Early-Life Environmental Exposures on Disease Phenotype and Clinical Course of Crohn's Disease in Children

Livia Lindoso, MD¹, Kajari Mondal, PhD¹, Suresh Venkateswaran, PhD¹, Hari K. Somineni, MS¹, Cortney Ballengee, MD¹, Thomas D. Walters, MD², Anne Griffiths, MD², Joshua D. Noe, MD³, Wallace Crandall, MD⁴, Scott Snapper, MD, PhD⁵, Shervin Rabizadeh, MD⁶, Joel R. Rosh, MD७, Neal LeLeiko, MD, PhD®, Stephen Guthery, MD⁰, David Mack, MD¹⁰, Richard Kellermayer, MD, PhD¹¹, Ajay S. Gulati, MD¹², Marian D. Pfefferkorn, MD¹³, Dedrick E. Moulton, MD¹⁴, David Keljo, MD, PhD¹⁵, Stanley Cohen, MD¹⁶, Maria Oliva-Hemker, MD¹७, Melvin B. Heyman, MD¹®, Anthony Otley, MD¹⁰, Susan S. Baker, MD, PhD²⁰, Jonathan S. Evans, MD²¹, Barbara S. Kirschner, MD²², Ashish S. Patel, MD²³, David Ziring, MD⁶, Michael C. Stephens, MD²⁴, Robert Baldassano, MD²⁵, Marla C. Dubinsky, MD²⁶, James Markowitz, MD²⁷, Lee A. Denson, MD²®, Jeffrey Hyams, MD²⁰, Subra Kugathasan, MD¹¹⁶ and Ashwin N. Ananthakrishnan, MD, MPH³⁰

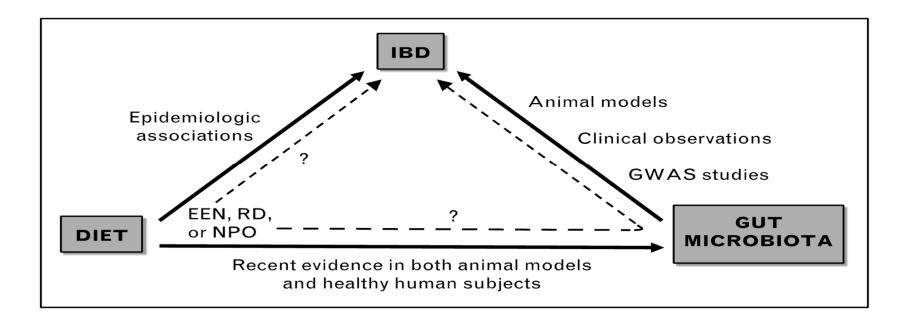
Breastfeeding	OR (95% CI)
Strictures of penetrating complications	0.65 (0.44 - 0.96)

Lindoso L. Am J Gastroenterol 2018 https://doi.org/10.1038/s41395-018-0239-9

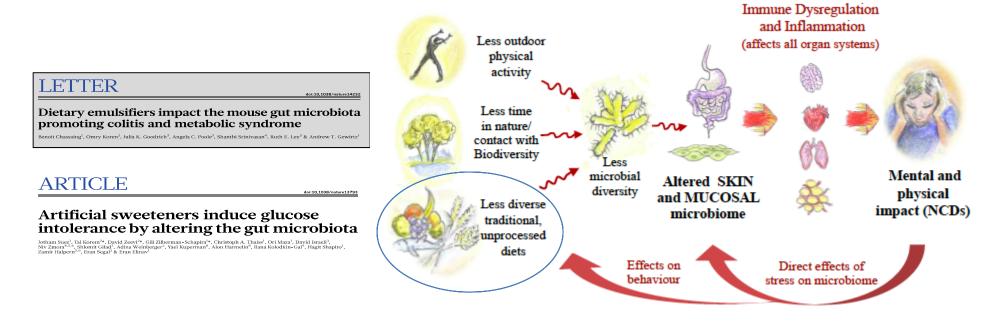
Diet is Associated with New Onset IBD

- High dietary intakes of total fats, PUFAs, omega-6 and meat were associated with an increased risk of CD and UC
- High fiber and fruit intakes were associated with decreased CD risk
- High vegetable intake was associated with decreased UC risk.

High School Diet and Risk of Crohn's disease


Risk of IBD may also be modified by intake in early childhood and adolescence

Food group	Adjusted HR Q5 vs. Q1	Adjusted p(trend)
Fiber	0.48 (0.22 – 1.05)	0.047
Animal Fat	1.38 (0.58 – 3.32)	0.08
Heme-Iron	1.81 (0.87 – 3.77)	0.058
Fish	0.45 (0.20 – 0.98)	0.027
Vegetables	0.44 (0.20 – 0.96)	0.097


What Can We Learn From Epidemiologic Data?

- What and when you eat potentially influences your risk of developing IBD
- Earlier exposure may be more important than dietary changes later in life for purpose of prevention of disease

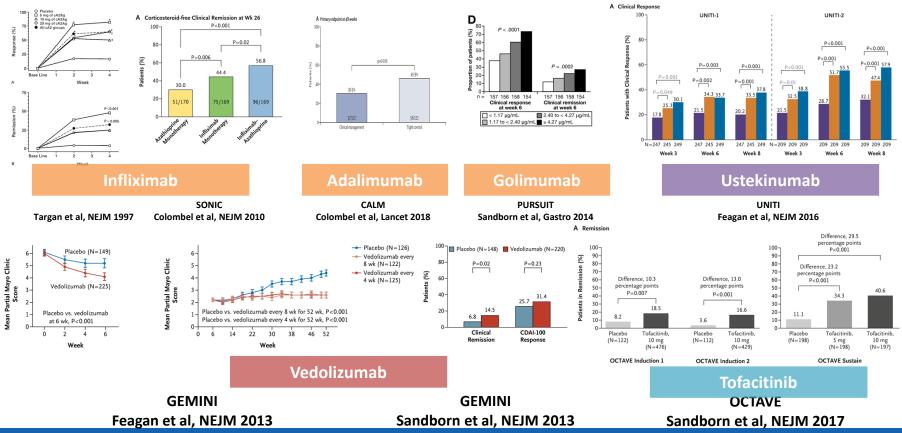
Is There a Relationship Between Diet, the Gut Microbiota, and IBD?

Something "Bad" in the Diet and the Gut Microbiome?

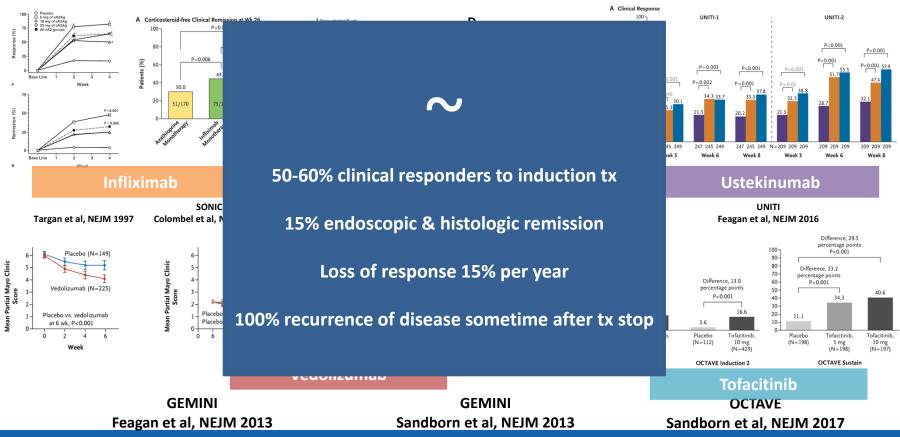
Renz et al. J Allergy Clin Immunol. 2017.

Why Do We Need Dietary Therapies for IBD?

- Science tells us that something in the lumen of the gut is driving inflammation
- Our patients want to know what they should eat and the information on the internet is not consistent and not evidence based
 - Our patients are already changing their diets
- Even our best therapies are not effective in all patients and they are associated with risks


Patient-reported foods that improve / worsen symptoms

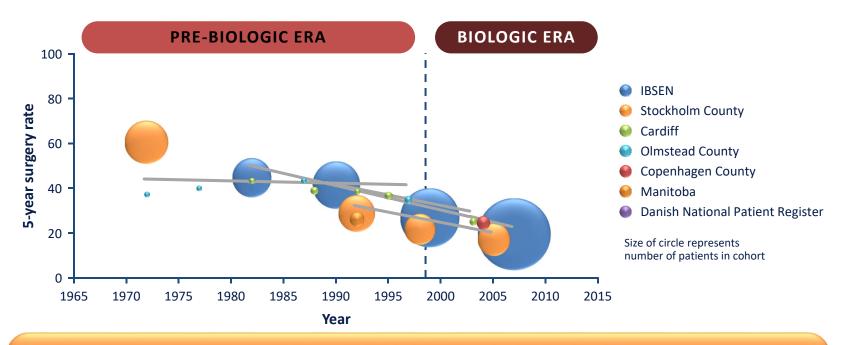
Food Items	CD (n=1121)	UC (n=597)	CD-O (n=405)	UC-P (n=206)
	(B, W)	(B, W)	(B, W)	(B, W)
Improved Symptoms				
Yogurt	108, 7*	54, 3*	26, 0*	19, 0*
Rice	59, 3*	30, 3*	20, 3†	16, 0*
Bananas	NR	NR	NR	14, 0*
Worsened Symptoms				
Non-Leafy Vegetables	28, 221*	29, 81*	7, 90*	3, 36*
Spicy Foods	1, 145*	3, 79*	0, 46*	0, 33*
Fruit	50, 136*	40, 63	22, 51†	15, 24
Nuts	3, 120*	1, 33*	0, 52*	0, 21*
Leafy Vegetables	6, 115*	2, 50*	2, 29*	1, 14†
Fried Foods	0, 105*	0, 53*	0, 22*	0, 11†
Milk	6, 105*	0, 49*	5 <i>,</i> 28*	2, 14†
Red Meat	6, 103*	7, 47*	2, 24*	NR
Soda	11, 99*	0, 46*	0, 33*	0, 28*
Popcorn	2, 97*	NR	0, 27*	0, 18*
Dairy	3, 94*	1, 56*	NR	0, 12†
Alcohol	0, 90*	0, 54*	NR	0, 23*
High Fiber	19, 87*	19, 35†	7, 46*	NR
Corn	0, 77*	0, 31*	0, 29*	NR
Fatty Foods	0, 62*	NR	NR	NR
Seeds	NR	NR	0, 22*	NR
Coffee	NR	4, 37*	NR	NR
Beans	NR	5, 30*	NR	NR


Why Do We Need Dietary Therapies for IBD?

- Science tells us that something in the lumen of the gut is driving inflammation
- Our patients want to know what they should eat and the information on the internet is not consistent and not evidence based
 - Our patients are already changing their diets
- Even our best therapies are not effective in all patients and they are associated with risks
 - Patients will IBD diagnosed in childhood have years of disease and exposures

Biologic and small molecule therapies in the last 2 decades

Biologic and small molecule therapies in the last 2 decades



Biologic Remission Rates – Pediatric IBD

Trial name	N	Trial design	Drug	Results
REACH (CD)	112	RCT	Infliximab 5 mg/kg maintenance (8 weeks vs. 12 weeks) after open label induction	PCDAI ≤10 Week 8: 55.8% Week 12: 23.5%
Imagine1 (CD)	192 (188 prior exposure to IFX)	RCT	Adalimumab maintenance High dose (40mg/20mg for bw ≥40kg or <40kg, n=93) versus Low dose (20mg/10mg for bw ≥40kg or <40kg, n=95)	PCDAI ≤10 High dose: 39% (26 wks) 33% (52 wks) Low dose: 28% (26 wks) 23% (52 wks)
T72 study group (UC)	60	RCT	Infliximab 5 mg/kg Clinical response at week 8. Comparison of interval maintenance (8 vs 12 weeks) Responders (45/60, 73.3%) randomized at week 8 (open label induction).	Mayo score ≤ 2 with no individual subscore > 1 and PUCAI < 10 8 weeks : 38.1% 12 weeks : 18.2%

Reduction in surgical rates in Crohn's disease in the biologic era

Surgical trends in CD population-based studies

Can treating to target further decrease the number of surgeries?

24

Safety concerns...

Table 3. Absolute Risk of Cancer in Patients With IBD, and Adjusted Ratio of Cancer in Patients With IBD Exposed to Thiopurines and/or Anti-TNF Agents, Compared With Patients Not Exposed to Immunosuppressive Drugs

	In aid area note	Adjusted RR (95% CI), HR (95% CI), or OR (95% CI) in patients with IBD exposed to immunosuppressive therapy versus those not exposed to immunosuppressive therapy		
	Incidence rate (cases per 1000 person-years) in total IBD population	Thiopurines alone	Anti-TNF agents alone	Thiopurines in combination with anti-TNF agents
All cancers, excluding nonmelanocytic skin cancers	7.3 ^a	RR,1.4 (1.2–1.7) ^b	RR, 1.1 (0.9–1.4) ^a	ND
Hematologic malignancies				
All	0.5 ^a	ND	RR, 0.9 (0.4-1.9) ^a	ND
Lymphoma ^b	0.3°	HR, 2.6 (2.0-3.4)°	HR, 2.4 (1.6-3.6) ^c	HR, 6.1 (1.3–4.2) ^c
Skin cancers				
Nonmelanocytic Skin cancer	9.1 ^d	OR, 1.9 (1.7-2.1)d	OR, 1.1 (0.9-1.4) ^d	ND
Melanoma	0.4ª	OR, 1.1 (0.7-1.7)d		ND
Urinary tract cancer ^e	0.3ª	HR, 2.8 (1.0-7.7) ^e	RR. 1.6 (0.6-4.2) ^a	ND

Safety concerns...

Table 3. Absolu Thiopu

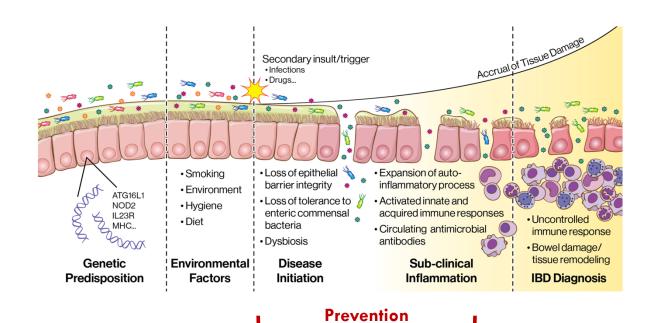
- Patients with IBD exposed to thiopurines exhibit an increased risk of cancers.
 - Young patients, particularly males, are at risk of postmononucleosis lymphomas and hepatosplenic T-cell lymphomas.

Patients with IBD exposed to thiopurines exhibit an increased risk of nonmelanocytic skin cancers

• Patients exposed to anti-TNF agents are at increased risk of melanoma.

• Whether patients treated with anti-TNF agents alone exhibit an excess risk of lymphoma remains controversial.

to


patients us those

nbination gents

.2)c

All cancers, exclude nonmelanocytic skin cancers
Hematologic malique All Lymphomab Skin cancers
Nonmelanocytic Melanoma
Urinary tract cancers

Intervening during the pre-clinical phase : road to prevention

Why do we need nutrition therapy in IBD?

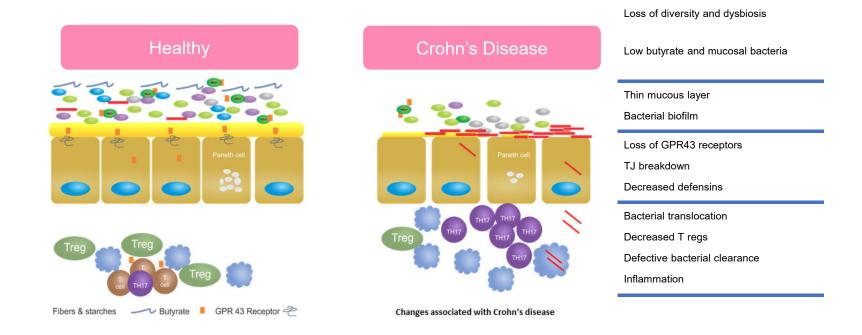
- Because it makes sense!
- Medications have limited efficacy
- Medications are not a cure!
- Safety concerns
- Children with IBD have a lifetime of treatment ahead of them

Targets For Dietary Intervention: Development of the Crohns Disease Exclusion Diet

Arie Levine MD

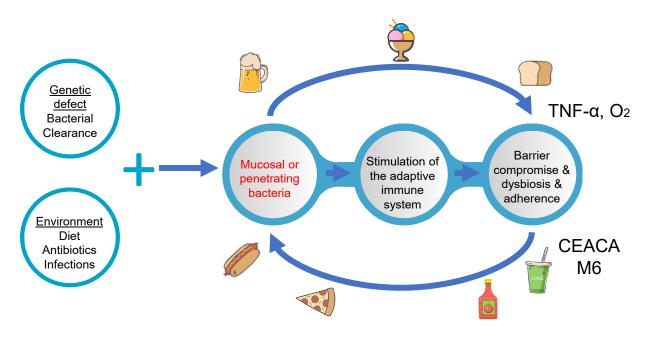
Wolfson Medical Center

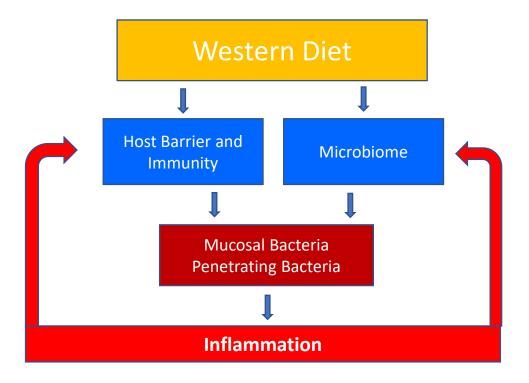
Holon

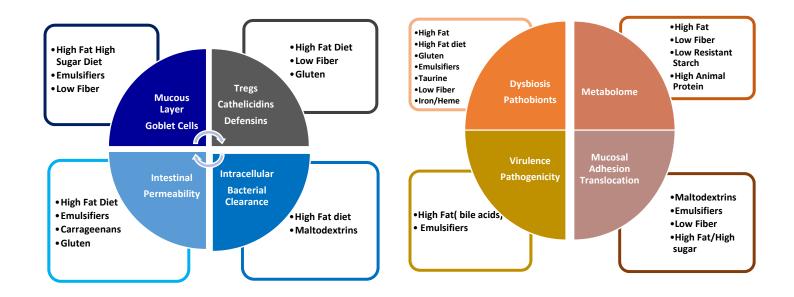

Tel Aviv University

Israel

Disclosures COI last 3 years


- Grants, Speaker fees, consulting, DSMB and advisory boards, :
- Nestlé Health Science (Grants, consulting, IP)
- Abbvie
- Celgene
- Takeda
- Ferring

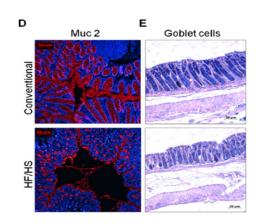

THE UPSTREAM EFFECTS OF MICROBIOTA AND ROLE IN INFLAMMATION


Levine, Sigall-Boneh, Wine. Gut. 2018.

INTERRUPTING THE BACTERIAL PENETRATION CYCLE

Diet Host and Microbiome

High Fat High Sugar Diet CEABAC 10 Model


Mucosal Proximity AIEC HF/HS

Fecal pellet transplantation from

Conventional donor HF/HS donor mice

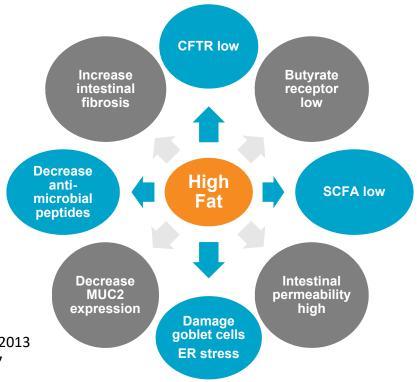
Agus et al. Nature Science Reports 2016

Muc 2 and Mucous decreased HF/HS

Martinez Medina Gut 2013

IMPLICATIONS OF HIGH FAT-HIGH SUGAR OR HIGH FAT DIET

High Fat-High Sugar Diet


- Decreases mRNA level of *Muc2* gene in colonic mucosa¹
- Increases intestinal permeability¹
- Increases mucosal AIEC colonization²
- Increases mucosa-associated E. coli²

High Fat Diet

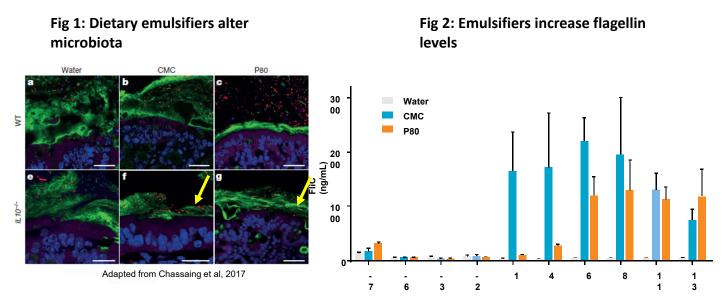
- Decreases accumulation of Muc2 in goblet cells of ileum³
- Increases intestinal permeability¹
- Increases mucosal bacteria Increase in *Proteobacteria* 3.5% to 17.5% in the cecal and fecal microbiota³

Martinez-Medina et al. Gut. 2014 Agus et al. Sci Rep. 2016 Tomas et al. PNAS. 2016

HIGH FAT DIET, HOST BARRIER AND IMMUNITY

Tomas et al. PNAS. 2016 Agus et al. Sci Rep. 2016

Chaissaing et al. Env Microbiology. 2013


Guo et al. Mediators Inflamm. 2017

Gulhane et al. Sci Rep. 2018

ECCO 2018. https://www.ecco-ibd.eu/publications/congress-abstract-s/abstracts-2018/item/op018-high-fat-diet-and-inflammation-drive-intestinal-fibrosis-enhancing-epithelial-x2013-mesenchymal-transition-through-the-activation-of-s1p3-signalling.html.

37

EMULSIFIERS ALTER MICROBIOTA COMPOSITION IN PRE-CLINICAL MODELS

Emulsifiers fed to mice resulted in microbiota encroachment into the mucus, altered microbiota composition, increased flagellin production and promoted bacterial translocation across mucosal surfaces

Chassaing et al. Nature. 2015. Chassaing et al. Gut. 2017.

EFFECTS OF WHEAT IN THE DIET

Gluten

- Increases tight junction (TJ) breakdown via Zonulin
- Associated with development of ileitis in TNF^{ΔARE/WT} Mice

α-Amylase/trypsin inhibitor (ATI)

Increase inflammation

What to Add, What to Exclude

Host

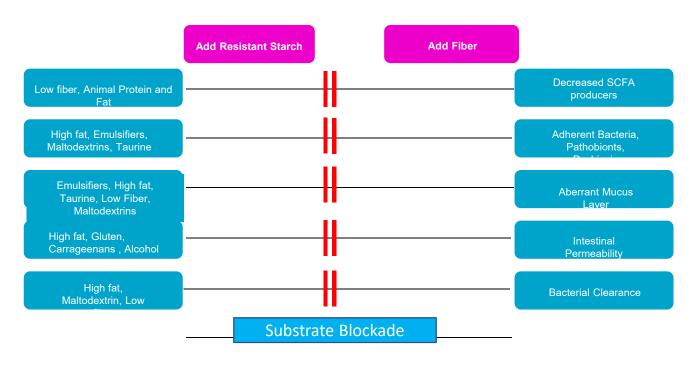
Add

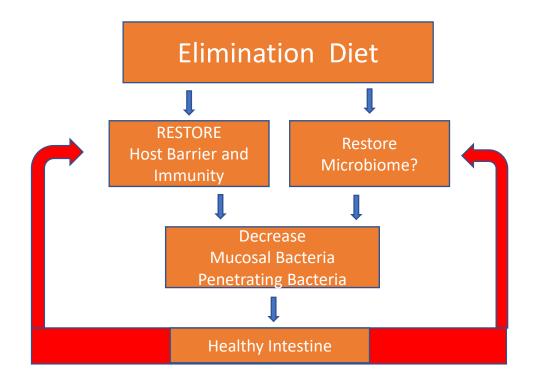
• Fiber

Reduce

- Animal Saturated Fat
- Emulsifiers
- Taurine rich protein
- Maltodextrins
- Gluten
- Carrageenan's
- Alcohol

Microbiome


Add


• Fiber (apple pectin, potato starch, RS)

Reduce

- Saturated +Dairy Fat
- Emulsifiers
- Taurine rich Protein
- Maltodextrins
- Heme, Iron
- Sulfites

SUBSTRATE DEPENDENT PATHWAYS for PATHOGENESIS IN CROHN'S DISEASE

Good in Theory, but Does it Work in Crohn's Disease?

Thank You

Nutrition-related resources and tools are available from Nestlé Nutrition Institute: www.nestlenutrition-institute.org

Visit the MyCE site at www.MyCEeducation.com
Offering CE to registered dietitians and registered nurses

